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introduction

code optimization - pushing the algorithm to limits

algorithm selection and design

outlook for 3D simulation

multi-billion grid points

2D simulations



compute system

hardware resources
¢ arithmetics (FLOPS count)

e memory: 40+ GB (4GB + overhead/billion discrete
variable)

e memory bandwidth

¢ interconnect (distributed systems)

In advance .... FLOPS count is rarely a bottleneck



Formulating physics for computers

our work scheme:

o formulate a physical phenomenon as partial differential
equations (PDEs)

series expansion of the solution function

set of linear algebraic equations (with specific properties)

billions of discrete variables

solving the algebraic equations

most steps are generic: signal/image processing, pattern
recognition, variational optimization etc.



Choosing an expansion
Fourier expansion

o effective on a single GPU (trivial discrete egs.) : amount of
memory is limiting

e multi GPU: consecutive FFT and transpose: interconnect
bandwidth is limiting

e multi GPU: compute copy overlap: interconnect latency is
limiting

Taylor expansion

¢ single GPU: can be effective (amount of memory is limiting)

e multi GPU: compute copy overlap is effective



Optimizing for memory footprint
pays off

e memory size is often a limitation
e significant factor in system cost

¢ potentially decrease bandwidth demand - faster
computations

methods of optimization

¢ decreasing the number of variables
¢ advanced grid generation: decrease number of meshpoints

¢ decreasing the memory overhead of solving the linear
system



The incompressible NS equation

fundamental eq. for momentum and mass conservation

- vev v (wiw) v ()

0 = -V.v )

variables:

¢ 3 variables in 2D (velocity components + pressure)
e each variable is used to compute a component
e compute all variables in a single kernel (if possible)

o few arithmetic operations/discrete variable (finite
difference)



The solution strategy: Chorin’s
projection method

decomposing pressure as: pit!' = pl +8p
predicting velocity - trivial linear system

v =vi— AtV (Vov)+nAevi]—vp! ©)

Substituting vit! = v —V§pinto Eq. (2)
pressure equation - matrix equations

0=V-v'+V28p (4)
correcting velocity

vitl —v —Vép (5)



Solving large linear systems

direct solvers: Gaussian elimination and its variants

e excessive cost for large systems O(N?)

iterative solvers

e GMRES: O(Nlog(N)) complexity, fast convergence, data
dependence - complex schemes and compute code

e CG and variants: O(N) complexity, gradients must be
stored

e Gauss-Seidel, Jacobi, SOR: simple, low memory usage,
O(L?) complexity
hybrid solvers

e Gauss-Seidel+multigrid: low memory usage + O(L)!
complexity



The multigrid method

multiresolution
discretization

multigrid cycle

Fig. by Marius Sucan
« residual is relaxing on @ GS iteration
multiple wavelength ® downsampling

« faster convergence @ resampling

decreasing system size - interconnect latency limit



Decreasing the number of iterations

sparse multigrid cycle

@ @ e arithmetic cost slightly
2

Q2h Q2h increased
[Q4h] [Q4h] e iteration count
Q8h decreased to 1/5 of the
full cycle
e we assume that not all o further tricks to
discretization levels are decrease aritmetic cost

equally important

e we try to bypass some
levels



Geometric multigrid (GMG)

eERm S, )

e re-discretization of

the contiuum
equations

using the same
stencil as on the
finer grids

inconsistent: no
guarrantee that
more iterations on
the coarse grid will
result better
prediction on the
fine grid



GMG sloped boundary

no generic Laplacian
stencil that provides
consistency

excessive iterations

makes cycling
strategy more
complicated

difficult to avoid
convergence
stagnation



Additive Correction Multigrid (ACM)

e downsampling: Coarse
discrete eqgs. are simple
sum of the discrete egs. ..

e no re-discretization at . ! -
coarse levels | [ |

e converging to the fine I------ ..I
grid solution, on all

levels e ACM: FD stencil fitting

to the problem!
e consistent



benchmark: 2D turbulence

e Soap film flowing through a comb.
¢ flow patterns on various scales

e chaotic

M.A. Rurgers: Soap film turbulence



2D jet
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¢ Fluid jet mimics a gap in the comb —— > equally spaced

jets
e eddy size growing (multiple scales to resolve)



benchmark: 2D turbulence
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