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introduction

• code optimization - pushing the algorithm to limits

• algorithm selection and design

• outlook for 3D simulation

• multi-billion grid points

• 2D simulations



compute system

hardware resources

• arithmetics (FLOPS count)

• memory: 40+ GB (4GB + overhead/billion discrete
variable)

• memory bandwidth

• interconnect (distributed systems)

In advance .... FLOPS count is rarely a bottleneck



Formulating physics for computers
our work scheme:

• formulate a physical phenomenon as partial differential
equations (PDEs)

• series expansion of the solution function

• set of linear algebraic equations (with specific properties)

• billions of discrete variables

• solving the algebraic equations

most steps are generic: signal/image processing, pattern
recognition, variational optimization etc.



Choosing an expansion
Fourier expansion

• effective on a single GPU (trivial discrete eqs.) : amount of
memory is limiting

• multi GPU: consecutive FFT and transpose: interconnect
bandwidth is limiting

• multi GPU: compute copy overlap: interconnect latency is
limiting

Taylor expansion

• single GPU: can be effective (amount of memory is limiting)

• multi GPU: compute copy overlap is effective



Optimizing for memory footprint
pays off

• memory size is often a limitation

• significant factor in system cost

• potentially decrease bandwidth demand - faster
computations

methods of optimization

• decreasing the number of variables

• advanced grid generation: decrease number of meshpoints

• decreasing the memory overhead of solving the linear
system

• in-place algorithms



The incompressible NS equation
fundamental eq. for momentum and mass conservation

∂v
∂ t

= −v · (∇⊗v) +
η

2
∇ · (∇v + ∇vT )−∇p (1)

0 = −∇ ·v (2)

variables:

• 3 variables in 2D (velocity components + pressure)
• each variable is used to compute a component
• compute all variables in a single kernel (if possible)
• few arithmetic operations/discrete variable (finite

difference)



The solution strategy: Chorin’s
projection method

decomposing pressure as: pt+1 = pt + δp

predicting velocity - trivial linear system

v∗ = vt −∆t [vt · (∇⊗vt ) + η∆⊗vt ]−∇pt (3)

Substituting vt+1 = v∗−∇δp into Eq. (2)

pressure equation - matrix equations

0 = ∇ ·v∗ + ∇
2
δp (4)

correcting velocity

vt+1 = v∗−∇δp (5)



Solving large linear systems
direct solvers: Gaussian elimination and its variants

• excessive cost for large systems O(N3)

iterative solvers

• GMRES: O(Nlog(N)) complexity, fast convergence, data
dependence - complex schemes and compute code

• CG and variants: O(N) complexity, gradients must be
stored

• Gauss-Seidel, Jacobi, SOR: simple, low memory usage,
O(L2) complexity

hybrid solvers

• Gauss-Seidel+multigrid: low memory usage + O(L)!
complexity



The multigrid method
multiresolution
discretization

Fig. by Marius Sucan

• residual is relaxing on
multiple wavelength

• faster convergence

multigrid cycle
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1 GS iteration
2 downsampling
3 resampling

decreasing system size - interconnect latency limit



Decreasing the number of iterations
sparse multigrid cycle
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• we assume that not all
discretization levels are
equally important

• we try to bypass some
levels

• arithmetic cost slightly
increased

• iteration count
decreased to 1/5 of the
full cycle

• further tricks to
decrease aritmetic cost



Geometric multigrid (GMG)

PC PE

PN PNE

• re-discretization of
the contiuum
equations

• using the same
stencil as on the
finer grids

• inconsistent: no
guarrantee that
more iterations on
the coarse grid will
result better
prediction on the
fine grid



GMG sloped boundary

PC PE

PN PNE

• no generic Laplacian
stencil that provides
consistency

• excessive iterations

• makes cycling
strategy more
complicated

• difficult to avoid
convergence
stagnation



Additive Correction Multigrid (ACM)

• downsampling: Coarse
discrete eqs. are simple
sum of the discrete eqs.

• no re-discretization at
coarse levels

• converging to the fine
grid solution, on all
levels

• consistent

• ACM: FD stencil fitting
to the problem!



benchmark: 2D turbulence
• Soap film flowing through a comb.

• flow patterns on various scales

• chaotic

M.A. Rurgers: Soap film turbulence



2D jet
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• Fluid jet mimics a gap in the comb −−> equally spaced
jets

• eddy size growing (multiple scales to resolve)



benchmark: 2D turbulence
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ideal scaling

Boffetta 2009 32k2 pseudo-spectral
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